
P R E M I E R

Microsoft
Excel 2007

VBA (Macros)

Premier Training Limited
4 Ravey Street

London
EC2A 4QP

Telephone +44 (0)20 7729 1811
www.premcs.com

 Excel 2007 VBA

TABLE OF CONTENTS

INTRODUCTION .. 1
MODULE 1 - OVERVIEW OF VISUAL BASIC .. 2
MODULE 2 - INTRODUCTION TO VBA ... 12
MODULE 3 - OVERVIEW OF VISUAL BASIC EDITOR 24
MODULE 4 - INPUTS AND OUTPUTS ... 34
MODULE 5 - VARIABLES ... 50
MODULE 6 - CONTROL STRUCTURES AND LOOPS 61
MODULE 7 - OBJECTS, PROPERTIES, METHODS, EVENTS AND
ERROR HANDLING .. 75
MODULE 8 - DEBUGGING ERROR! BOOKMARK NOT DEFINED.
MODULE 9 - FORMS (DIALOG BOXES) ... 81
INDEX ... 100

 Excel 2007 VBA

© Premier Training Limited Page 1

INTRODUCTION
This manual is designed to provide information required when
using Excel 2007. This documentation acts as a reference
guide to the course and does not replace the documentation
provided with the software.

The documentation is split up into modules. Within each
module is an exercise and pages for notes. There is a
reference index at the back to help you to refer to subjects as
required.

These notes are to be used during the training course and in
conjunction with the Excel 2007 reference manual. Premier
Computer Solutions holds the copyright to this
documentation. Under the copyright laws, the documentation
may not be copied, photocopied, reproduced or translated, or
reduced to any electronic medium or machine readable form,
in whole or in part, unless the prior consent of Premier
Computer Solutions is obtained.

 Excel 2007 VBA

© Premier Training Limited Page 2

Module 1 - Overview of
Visual Basic

A macro is a sequence of instructions that can be
automatically executed in order to automate frequent or
complicated tasks. Macros are written in a programming
language called Visual Basic and can be created by recording
a task or by writing the Visual Basic program or by a
combination of the two.

Macros can be added to menus, assigned to keys or buttons
or made to run automatically.

Objects and Hierarchies

When developing applications in Excel, it’s helpful to think in
terms of objects, excel elements that you can manipulate
through a macro.

On the corresponding pages you will see a collection of
objects available in Excel. The hierarchy comprises Excel’s
object model.

Excel’s object model, exposes very powerful data analysis
objects, such as worksheets, charts, pivot tables, scenarios,
and financial functions amongst others. Objects act as
containers for other objects such as Workbook and Command
Bar objects. A worksheet object can contain objects such as
Range objects and so on.

Methods

Objects have Methods, and a method is an action that is
performed with the object. To clear the contents of a cell, we
can use the method ClearContents, which is a method for a
range object.

Another key concept of Excel VBA is collections. A collection
is a group of objects of the same class. For example
Worksheets is a collection of all Worksheet objects in a
Workbook object.

 Excel 2007 VBA

© Premier Training Limited Page 3

Properties

Every object has properties. An example would be that a
range object has a property called Value. You can display the
value or set the property value to a specific value.

The following code uses the Msgbox function to display a
value;

Sub ShowValue()

Msgbox Worksheets(“Sheet1”).Range(“A1”).Value

End Sub

Microsoft Excel Objects

 : See Table1

 : See Table2

Object and collection

Object only

 Excel 2007 VBA

© Premier Training Limited Page 4

Table 1: Microsoft Excel Objects
(Worksheet)

Object and collection

Object only

Table 2: Microsoft Excel Objects (Charts)

 Excel 2007 VBA

© Premier Training Limited Page 5

Legend

Object and collection

Object only

 Excel 2007 VBA

© Premier Training Limited Page 6

Click arrow to expand chart

Objects, Properties and Methods

An object is something that is controlled by Visual Basic, for
example a worksheet or a range of cells. An object is
controlled using properties and methods.

A property is a characteristic of the object that can be set in
a certain way. For example a worksheet has the visible
property indicating whether or not the worksheet is visible; a
range of cells has the height property indicating the height of
the rows in the range.

A method is an action that can be performed by the object.
For example, a worksheet can recalculate formulae; a range
of cells has the copy method.

Properties have values that are set or returned. Methods are
actions that an object can perform. Most properties have a
single value, methods can take one or more arguments and
may return a value.

One of the following is usually performed by statements in a
procedure:

Set the value of one of the properties of an object.

Return the value of one of the properties of an object.

Perform a task on an object by using a method of the object.

For example, a cell can be tested to see if it is empty by
returning the value property. If it is not empty the cell can be
cleared using the ClearContents method. A new formula
can entered into the cell by setting the value property.

 Excel 2007 VBA

© Premier Training Limited Page 7

Sub TestEmpty()
 If IsEmpty(ActiveCell.Value) Then
 ActiveCell.Value = 10
 Else
 ActiveCell.ClearContents
 End If
End Sub

Controlling Objects with their Properties

An object is changed by changing it’s property. The current
property value can be tested and a new value for the property
can be set.

A property is usually one of the following:

A numeric value

A character string

A True or False value

A property is referred to in a statement as:

Object.Property

Setting a Property Value

To set a new value for the property, use the following
statement:

Object.Property = expression

For example to set properties for the current active cell:

ActiveCell.Rowheight = 14
ActiveCell.Value = "Annual Totals"
ActiveCell.Locked = True

Returning a Property Value

The current property of a value can be returned and is usually
assigned to a variable for further testing using the following
statement:

variable = Object.Property

For example:

 Excel 2007 VBA

© Premier Training Limited Page 8

row_height = ActiveCell.RowHeight

A property can be set using the value of another property
without assigning to a variable in between.

For example, to assign the value in the current active cell into
cell C1 on the current worksheet:

Cells(1, 3).Value = ActiveCell.Value

Performing Actions with Methods

A method performs an action on an object. For example,
Clear is a method that can be applied to clear the contents of
a range of cells. Certain methods can also return values, for
example the CheckSpelling method which performs a spell
check on a range of cells, also returns the value True or False
depending on whether the text is spelt correctly.

Using Methods

As well as possibly returning values a method may require
certain arguments, this is referred to as the method taking
arguments. The syntax of the statement depends on whether
a method takes arguments:

A method that doesn’t take arguments is written:

Object.Method

For example, to justify a range of cells called Costs:

Costs.Justify

A method that does take arguments is written:

Object.Method argument list

For example to name a selection of cells using the labels in
the top cell of the selection:

Selection.CreateNames True, False, False, False

As the arguments are optional this could also be written as:

Selection.CreateNames True

If a method returns a result and the result is to be saved, then

 Excel 2007 VBA

© Premier Training Limited Page 9

the arguments that the method takes must be enclosed in
parenthesis.

For example to save the result of the InputBox method in a
variable called SalesData:

SalesData =InputBox ("Enter the sales data")

Using Named arguments

Some methods take several arguments some of which are
optional and can be omitted. For example the CreateNames
method has four arguments most of which can be omitted in
normal use.

The method can be written to just include the relevant
arguments but this is not always very clear:

Selection.CreateNames True

It may be preferable to write the method statement using
named arguments:

Selection.CreateNames Top:=True

Named arguments allow the method to be written with any of
the required arguments in any order. The value is assigned
to the named argument using the := operator. They make the
code much easier to understand and are less prone to error
than an argument list where the arguments must be in the
correct order and may be accidentally omitted.

Workbooks and Sheets

Activating a Workbook

Activating a workbook using the Activate method puts the
workbook in the active window. The following procedure
activates the open workbook named “MyBook.xls”.

Workbooks("MyBook.xls").Activate

Activating a Worksheet

 Excel 2007 VBA

© Premier Training Limited Page 10

The following example activates Sheet1 in the workbook
“MyBook.xls”:

Workbooks("MyBook.xls").Worksheets("Sheet1").Activate

The following example selects cells A1:C3 on Sheet1 and
then makes cell B2 the active cell:

Worksheets("Sheet1").Activate
Range("A1:C3").Select
Range("B2").Activate

The following example inserts “Hello” in the cell B1 on the first
sheet:

Worksheets(1).Range(“B1”).Value = “Hello”

ThisWorkBook

The ThisWorkBook property refers to the workbook
containing the macro code. ThisWorkbook is the only way to
refer to an add-in workbook from inside the add-in itself. The
ActiveWorkbook property does not return the add-in
workbook (it returns the workbook calling the add-in), and the
Workbooks method may fail because the workbook name
probably changed when the add-in was created.
ThisWorkbook always returns the workbook where the code
is running.

For example, use the following code to activate a dialog sheet
stored in the add-in workbook:

ThisWorkbook.UserForm1.Show

The following example closes the workbook that contains the
example code:

ThisWorkbook.Close

Performing Multiple actions on an Object

It may be necessary for a procedure to perform several
different actions on the same object. For example, the
following may need to be performed to the active cell:

ActiveCell.Formula = "=NOW()"
ActiveCell.NumberFormat = "dd/mm/yy"

 Excel 2007 VBA

© Premier Training Limited Page 11

ActiveCell.Font.Name = "Arial"
ActiveCell.Font.Bold = True
ActiveCell.Font.Size = 14

Because all the statements refer to the same object, it is
possible to use the With statement to indicate that a series of
statements are all to be performed to one object:

With ActiveCell
 .Formula = "=NOW()"
 .NumberFormat = "dd/mm/yy"
 .Font.Name = "Arial"
 .Font.Bold = True
 .Font.Size = 14
End With

The With statement makes the code easier to write, easier to
read and is more efficient when running the macro.

With statements can be nested and the above example could
be written as:

With ActiveCell
 .Formula = "=NOW()"
 .NumberFormat = "dd/mm/yy"
 With .Font
 .Name = "Arial"
 .Bold = True
 .Size = 14
 End With
End With

 Excel 2007 VBA

© Premier Training Limited Page 12

Module 2 - Introduction to
VBA

Recording a Macro

A macro can be easily created by instructing Excel to record a
series of routine actions. This is very useful for repetitive
tasks.

• To record a macro:

1. Choose Tools Macro Record Ne.w Macro.

2 In the Macro name text box, type a name for the macro.

The macro name can contain letters, numbers and
underscores; it must begin with a letter. The name
cannot contain spaces or punctuation marks.

Type a brief description of the macro in the Description
box, Excel creates it’s own default description.

3. To run the macro with a shortcut key type a letter in the
Shortcut key box. The shortcut will be assigned to
[CTRL]+[letter]. Hold [SHIFT] while typing the letter in the
Shortcut key box to assign the shortcut to
[CTRL]+[SHIFT]+[letter].

4. Choose the OK button to start recording the macro.The
Stop Recording toolbar appears on the screen, and the
word Recording appears in the status bar.

5. Perform the actions that are to be recorded.

6. Click the Stop Recording button from the Stop

 Excel 2007 VBA

© Premier Training Limited Page 13

Recording toolbar or choose Tools Macro Stop
Recording, when the macro is finished.

Running a Macro

To run a macro:

If a shortcut key was assigned to the macro, then press the
shortcut key.

Otherwise:

1. Choose Tools Macros or press [ALT]+[F8].

2. Type the macro name or select it from the list.

3. Choose the Run button.

A macro can be assigned to a menu item, a button or another
graphic object providing a simple and convenient way of
running the macro.

ASSIGNING MACROS TO BUTTONS AND
OBJECTS

Assigning a Macro to a Button on a Sheet

A button can be created on a worksheet and a macro
assigned to it. The macro will be available whenever the
workbook is open.

To create a button on a sheet:

1. Choose the Button tool on the Forms toolbar. The
mouse pointer is replaced by a cross-hair.

2. Move the cross-hair to where the corner of the button
should be.

3. Drag until the button is the correct size and shape and
release the mouse button. The Assign Macro dialog box
appears:

 Excel 2007 VBA

© Premier Training Limited Page 14

To assign an existing macro to the button:

1. Type the macro name or select it from the Macro Name
list.

2. Choose the OK button.
3. To assign a new macro to the button:
4. Choose the Record button and follow the steps for

recording a new macro.
5. To run the macro:
6. Click the button to which the macro is assigned.
7. To alter the text or appearance of a button:
8. Select the button by holding down [CTRL] and clicking the

left mouse button.
9. Alter the button text by typing new text.
10. Change the font or alignment of the button text by

choosing Format Control from the shortcut menu.

Assigning a Macro to a Drawn Object on a
Sheet

Macros can be assigned to any worksheet object by choosing
Assign Macro from the object’s shortcut menu.

Assigning a Macro to a Button on a
Toolbar

If a macro is assigned to a button on a toolbar, the macro is

 Excel 2007 VBA

© Premier Training Limited Page 15

available at any time and for every sheet in the workbook,
provided the toolbar is displayed. The workbook containing
the macro is automatically opened, if it is not already open,
when the button is clicked from another workbook.

A macro is usually assigned to an unused custom button, but
can be assigned to a built in button overriding the button’s
normal function.

Customising a Toolbar

Change, or customise, a toolbar so it contains buttons for
most often used commands or macros.

To add a button to the toolbar:

1. Choose the Commands tab of Tools Customize.

2. From the Categories list box, select Macros.

3. Drag the Custom Button from the Commands list box
over the toolbar and then release the mouse.

4. To select a different button image for the new button,
right-click the new button and choose Change Button
Image. Select a button image.

5. Choose the Close button.

Creating a Toolbar

 Excel 2007 VBA

© Premier Training Limited Page 16

Buttons can only be added to existing toolbars. It may be
necessary to create a new toolbar before adding a button to
it.

To create a new toolbar:

1. Choose the Toolbars tab of Tools Customize.

2. Click the New button and enter a name for the new
toolbar.

3. Choose the OK button.

Button Image Editor

Excel is supplied with a small selection of “spare” button
images. New button images can be created by editing the
existing images or by drawing new images.

To edit a button image:

1. Choose Tools Customize.

2. Right-click the button image to be edited and choose Edit
Button Image.

 Excel 2007 VBA

© Premier Training Limited Page 17

3. To edit the existing image, select a colour and fill the

pixels of the image.

4. To draw a new button image, choose the Clear button
and then follow step 3.

Images can also be copied and pasted from other buttons or
graphics applications.

Changing a Button’s ScreenTip

By default, a new custom button is given the name “&Custom
Button”. The name of the button appears as the button’s
ScreenTip when the mouse is positioned over it.

To change a button’s ScreenTip:

1. Choose Tools Customize.

2. Right-click the button image to be edited and type the
button’s name in the Name box.

Relative References

If the relative reference option is not chosen the macro
records the actual cell references and will always operate on
those fixed cells, regardless of which cell is active when the
macro is initiated. The following macro selects the range B3
to C5:

Sub SelectAbsolute()
 Range("B3:C5").Select

 Excel 2007 VBA

© Premier Training Limited Page 18

End Sub

If a macro is recorded using relative references, cell
references are recorded relative to the previously active cell.
The macro then operates on cells relative to the cell that is
active when the macro is initiated. The following macro
selects a single cell, one row beneath the starting cell:

Sub SelectRelative()
 ActiveCell.Offset(1, 0).Range("A1").Select
End Sub

• To set the reference type:

When recording a macro, click the Relative References
button on the Stop Recording toolbar. By default, Excel
records in absolute mode. Recording can be switched from
absolute to relative, and vice versa, during the same
recording process.

See also The Range Object page Error! Bookmark not
defined..

Editing A Macro

You can use ALT + F11 to enter the Visual Basic Code
Editor…

Entering and editing the text in a VBA module works just as
you would expect. You can select text and copy it as you
would in any Microsoft Application.

A single instruction can be as long as you require it to be,
however for readability, it’s easier to read if you break it onto
two or more lines. To do this, end the line with a space
followed with and underscore, continuing the code on the next
line e.g.

Msgbox (“The name entered into the Cell A1 on Worksheet 1
_

was “ & MyName)

As you enter code in the VB editor, you’ll notice that Excel
makes some adjustments to your text, for example, if you
omit the space before or after the equals sign (=), Excel
enters it for you. Also various words in your code will become
Title case. This is normal and will assist you in your code later

 Excel 2007 VBA

© Premier Training Limited Page 19

on.

Auto Indent Option (Tools-Options)

The Auto Indent Option setting determines whether VBA
automatically indents each new line of code by the same
amount as the previous line. You can specify the number of
characters, the default is four.

Don’t use the space bar to indent your code, use the Tab key.
This also works if you select more that one line of code.

Like Excel the VB Editor has many levels of Undo and Redo.

 Excel 2007 VBA

© Premier Training Limited Page 20

Exercise 1
1. Record a macro named SystemDate to enter the system

date in the active cell, format it to a suitable date format,
change the font to Arial 10 and AutoFit the column width.

2. Edit the SystemDate macro to include better use of the
With statement.

 Excel 2007 VBA

© Premier Training Limited Page 21

Exercise 2
1. Record the command Edit Clear Formats as a

macro named “ClearFormat” to clear the formatting from
a selection of cells.

Assign the macro to the shortcut key combination
[CTRL]+[SHIFT]+[f].

Assign the macro to a custom button on a customised
toolbar.

Assign the macro to a button on a worksheet.

2. Record a macro named “Address” to enter the first three
lines of an address in consecutive cells in a column.
Record the macro using relative cell references.

3. Save the workbook containing the macros as EXERCISE
1.XLS.

 Excel 2007 VBA

© Premier Training Limited Page 22

Answers to Exercise 1

Question 1

Sub SystemDate()
 ActiveCell.FormulaR1C1 = "=NOW()"
 With Selection.Font
 .Name = "Arial"
 .FontStyle = "Regular"
 .Size = 10
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlNone
 .ColorIndex = xlAutomatic
 End With
 Selection.NumberFormat = "dd-mmm-yy"
 Selection.EntireColumn.AutoFit
End Sub

Question 2

Sub SystemDate()
 ActiveCell.Formula = "=NOW()"
 With Selection
 With .Font
 .Name = "Arial"
 .Size = 10
 End With
 .NumberFormat = "dd-mmm-yy"
 .EntireColumn.AutoFit
 End With
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 23

Answers to Exercise 2

Question 1

Sub ClearFormat()
 Selection.ClearFormats
End Sub

Question 2

Sub Address()
 ActiveCell.FormulaR1C1 = "XYZ Company"
 ActiveCell.Offset(1, 0).Range("A1").Select
 ActiveCell.FormulaR1C1 = "Any Street"
 ActiveCell.Offset(1, 0).Range("A1").Select
 ActiveCell.FormulaR1C1 = "Any Town"
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 24

Module 3 - Overview of
Visual Basic Editor
Visual Basic Editor

Excel is supplied with the Visual Basic Editor for modifying
and creating macros and for creating user defined forms.

The Visual Basic Editor is common to all the Microsoft Office
97 applications.

To start with, the Visual Basic Editor contains two important
windows: the Project Explorer and the Code window.

Creating Modules

Standard Code Modules, also called simply Code Modules
or just Modules, are where you put most of your VBA code.
Your basic macros and your custom function (User Defined
Functions) should be in these modules.

Your workbook's VBA Project can contain as many standard
code modules as you want. This makes it easy to split your
procedure into different modules for organization and ease of
maintenance.

Workbook And Sheet Modules are special modules tied

 Excel 2007 VBA

© Premier Training Limited Page 25

directly to the Workbook object and to each Sheet object.
The module for the workbook is called ThisWorkbook, and
each Sheet module has the same name as the sheet that it is
part of. These modules should contain the event procedures
for the object, and that's all.

User Form Modules are part of the UserForm object, and
contain the event procedures for the controls on that form.
For example, the Click event for a command button on a
UserForm is stored in that UserForm's code module. Like
workbook and sheet modules, you should put only event
procedures for the UserForm controls in this module.

Class Modules are used to create new objects.

VBA Modules

VBA Modules are stored in an Excel Workbook, but you view
or edit a module using the Visual Basic Editor.

A VBA Module consists of Procedures. A Procedure is a unit
of code that performs some action. Below is an example of a
Sub Procedure,

Sub Example()

 Answer = 1+1

 MgsBox “The result is “ & Answer

End Sub

A VBA module can also have Function procedures.

Function Procedures

Introduction

There are in excess of 300 functions available in formulae on
an Excel worksheet, such as SUM, IF and AVERAGE. These
functions can be entered into cells directly or via the Function
Wizard.

Visual Basic also contains functions. Some Visual Basic
functions are similar to worksheet functions such as, NOW
and YEAR, others are standard to all forms of the BASIC

 Excel 2007 VBA

© Premier Training Limited Page 26

language and some are unique to Visual Basic.

Despite the number and complexity of functions available
there is often a need to create others. A user-defined
function can be used on a worksheet or in a module. A user-
defined function can be thought of as a “stored formula”.

User-Defined Functions

Function procedures return a value. A function procedure is
enclosed by Function and End Function statements and must
contain a statement that will return a value to the place where
the function was called. Functions usually have data passed
to them, this is specified in brackets after the function name.

Function Function1 (variable list)
 Commands
 Function1 = Expression
End Function

A function procedure can be used as a user-defined function
provided it does not perform actions that alter the Excel
environment for example inserting, deleting or formatting
cells; moving, adding or deleting sheets. Functions can only
return values, they can not perform actions with objects.

User-defined functions allow the user to type the procedure
name directly into a cell on the worksheet, followed by the
required data enclosed in brackets and separated by commas
in the order expected by the function procedure.

In the following example, the function Percentage is expecting
two variables to be passed. It uses the variables to calculate
the percentage and the result is passed back:

Function Percentage (Amount, Percent)
 ‘Increase amount by percent
 Percentage = (Amount*Percent/100)+Amount ‘Returns
the result
End Function

To use the function in the worksheet, type the function name
followed by the data that is to go into the variables enclosed
in parenthesis:

=Percentage (150,17.5)
=Percentage (B1,B2)

In the following example, the function Age is expecting one
variable to be passed. It uses the variable to calculate the

 Excel 2007 VBA

© Premier Training Limited Page 27

age and the result is passed back:

Function Age(DOB)

 If Month(DOB) > Month(Now) Then
 Age = Year(Now) - Year(DOB) - 1
 ElseIf Month(DOB) < Month(Now) Then
 Age = Year(Now) - Year(DOB)
 ElseIf Day(DOB) <= Day(Now) Then
 Age = Year(Now) - Year(DOB)
 Else
 Age = Year(Now) - Year(DOB) - 1
 End If
End Function

Function Wizard

Although a user-defined function can be used on the
worksheet by typing the function name and variable(s) in
brackets it is often better to use the Function Wizard.

Excel automatically adds user-defined functions to a User
Defined category of the Function Wizard.

Excel Functions

In the Age user-defined function example above, the Excel
functions Month(), Now and Year() were used. Not all
worksheet functions are applicable to modules. However,
any worksheet function can be used in a module if it is written
“Application.FunctionName”.

Project Window

The Project Explorer displays a hierarchical list of the projects
and all of the items contained in and referenced by each of
the projects.

• VBAProject

The name of an open workbook.

• Microsoft Excel Objects

The worksheets and chartsheets contained in the
VBAProject. The event procedures (see page Error!
Bookmark not defined.) for each sheet and the workbook
are stored here.

 Excel 2007 VBA

© Premier Training Limited Page 28

• Forms

Any user defined forms.

• Modules

Recorded and written procedures.

Properties Window

This is the window in the Visual Basic programming
environment that describes the physical properties of each
object on the form, and allows the programmer to change
those properties.

Code Window

Use the Code window to write, display and edit Visual Basic
code. Open as many Code windows as there are modules;
view the code in different forms or modules and copy and
paste between them.

Open a Code window from the Project window, by double-
clicking a form or module.

Drag selected text to:

A different location in the current Code window.

Another Code window.

 Excel 2007 VBA

© Premier Training Limited Page 29

The Immediate and Watch windows.

The Recycle Bin.

• Object Box

Displays the name of the selected object. Click the arrow to
the right of the list box to display a list of all objects
associated with the form.

• Procedures/Events Box

Lists all the events recognised by Visual Basic for a form or
control displayed in the Object box. When an event is
selected, the event procedure associated with that event
name is displayed in the Code window.

If (General) is displayed in the Object box, the Procedure box
lists any declarations and all of the general procedures that
have been created for the form. If editing module code, the
Procedure box lists all of the general procedures in the
module. In either case, the procedure selected in the
Procedure box is displayed in the Code window.

All the procedures in a module appear in a single, scrollable
list that is sorted alphabetically by name. Selecting a
procedure using the drop down list boxes at the top of the
Code window moves the cursor to the first line of code in the
procedure selected.

• Split Bar

Dragging the Split bar down, splits the Code window into two
horizontal panes, each of which scrolls separately. View
different parts of code at the same time. The information that
appears in the Object box and Procedures/Events box applies
to the code in the pane that has the focus. Dragging the bar
to the top or the bottom of the window or double-clicking the
bar closes a pane.

• Margin Indicator Bar

A grey area on the left side of the Code window where margin
indicators are displayed. Margin indicators provide visual
cues during code editing.

Procedures

A procedure is a series of statements of Visual Basic code
stored in a module of a Visual Basic project. When a macro
is recorded Excel writes a procedure. The code can be
modified and special Visual Basic commands can be included

 Excel 2007 VBA

© Premier Training Limited Page 30

to allow user interaction, conditional testing, looping and other
options.

Each procedure is identified by a name that is written at the
top of the procedure.

There are two types of procedures, Sub procedures and
Function procedures.

Sub Procedures

Sub procedures perform actions. A macro is a recorded Sub
procedure.

A Sub procedure is enclosed by Sub and End Sub
statements, the Sub statement contains the macro name:

Sub Macro1 ()
 Commands
End Sub

The macro name is followed by brackets. The brackets may
contain variable data called arguments.

Inserting Comments

It is very important to put explanatory comments into a macro
as it will make the macro easier to read and debug.

Comment text can be placed in a line on its own or following a
macro statement.

Comment text is prefixed by an apostrophe. The apostrophe
tells Visual Basic to ignore the text that follows it and to
continue execution with the statement on the next line.

Comment text normally appears in a green font, but this style
can be altered.

Printing a Visual Basic Module

• To print the contents of a Visual Basic module:

1. Display the Visual Basic module that is to be printed.

2. Choose File Print.

3. Set the required print options.

 Excel 2007 VBA

© Premier Training Limited Page 31

4. Choose the OK button.

 Excel 2007 VBA

© Premier Training Limited Page 32

Exercise 3
1. Open the workbook USER FUNCTIONS.XLS and
investigate the Age(), Celsius() and Fahrenheit() functions.

2. Write a function procedure named “YdsToMts” to convert
a length in yards to one in metres, where 1 yard equals 0.914
metres.

3. Write a function procedure named “MtsToYds” to convert
a length in metres to one in yards, where 1 metre equals
1.094 yards.

4. Resave the workbook (this workbook will be needed
again later in the course).

 Excel 2007 VBA

© Premier Training Limited Page 33

Answers to Exercise 3

Question 2

Function YdsToMts(Yards)
 YdsToMts = Yards * 0.914
End Function

Question 3

Function MtsToYds(Metres)
 MtsToYds = Metres * 1.094
End Function

 Excel 2007 VBA

© Premier Training Limited Page 34

Module 4 - Inputs and
Outputs
Selecting Cells, Ranges and Objects

A range object can consist of:

• A cell.

• One or more selections of cells.

• A 3-D range.

• A row or column.

Working with range objects is fundamental to most Excel
macros. There are several important methods and properties
for controlling a range object.

Cells Method

The Cells method returns a single cell. All cells are
numbered on a worksheet from left to right, top to bottom.
Hence, A1 is cell number 1 and IV65536 is cell number
16,777,216.

However, because cells always occur in rows and columns a
cell can also be specified by its row and column index.
Cells(1) can also be referred to as Cells(1,1) and
Cells(16777216) can be referred to as Cells(65336,256).
Referring to a cell by its row and column index is usually
easier than referring to it simply by its position number unless
working within a virtual worksheet (see below).

Using the Cells method with no argument returns all the cells
on a worksheet.

Range Method

The range method returns a rectangular range or cells.

The range can be specified by a text string that is a cell
address or a defined range name or it can be specified with
the Cells method.

 Excel 2007 VBA

© Premier Training Limited Page 35

Selecting Range Objects

Range objects are selected using the Select method:

Range(“A1:B2”).Select
Range(Cells(1,1),Cells(2,2)).Select

Multiple selections using the Cells method must also use the
Union method.

Flexible Ranges

Offset Method

The Offset method takes one Range object and calculates a
new Range object from it.

The Offset method has two arguments: the number of rows
to move the selection down or up and the number of columns
to move the selection right or left.

 Excel 2007 VBA

© Premier Training Limited Page 36

Range("C3:D4").Offset(-2,-2).Select

Range("C3:D4").Offset(2,2).Select

Resize Method

The Resize method also takes one Range object and
calculates a new Range object from it. However, instead of
moving the range, it changes the range’s size.

The Resize method has two arguments: the number of rows
for the new selection and the number of columns for the new
selection.

Range("A1:B2").Resize(3,4).Select resize the range to
A1:D4

Selection, ActiveCell and Activate Methods

The Selection method returns the currently selected range.
The ActiveCell method returns the active cell within the
current selection. If the current selection consists of only one
cell, then the Selection method and ActiveCell method return
the same object.

The Activate method activates a single cell within the current
selection.

Row and Column Properties

Returns the number of the first row or column of a range. In
the following example, FirstRow would equal 2 and
FirstColumn would equal 3 so long as the active cell was in
the region C2:E5. CurrentRow would equal 4 and
CurrentColumn would equal 4 if the active cell was D4:

 Excel 2007 VBA

© Premier Training Limited Page 37

Sub FirstRowColumn()
 FirstRow = ActiveCell.CurrentRegion.Row
 CurrentRow=ActiveCell.Row
 FirstColumn = ActiveCell.CurrentRegion.Column
 CurrentColumn=ActiveCell.Column
End Sub

Rows and Columns Methods

Returns a single row or column or a collection of rows and
columns.

Rows(3).Delete Deletes the third row of the
worksheet.

Selection.Columns.Count Returns the number or
columns in the current selection.

Address Method

Returns the range reference, as a string. The following
examples assume the active cell is A1:

ActiveCell.Address A1
ActiveCell.Address(rowAbsolute:=False) $A1
ActiveCell.Address(referenceStyle:=xlR1C1) R1C1

Returning to the Starting Cell

If a procedure uses a method to offset or resize a selection it
is often useful to be able to return to the cell which was active
before the procedure was run. To do this use the Address
method of the active cell:

Sub Test()
 ReturnCell = ActiveCell.Address

 ...procedure

 Range(ReturnCell).Select

 Excel 2007 VBA

© Premier Training Limited Page 38

End Sub

End Method

Returns a cell (a Range object) at the end of the region.
Equivalent to pressing [END]+[], [END]+[], [END]+[] or
[END]+[].

The direction to move is one of xlToLeft, xlToRight, xlUp, or
xlDown.

e.g. Range("C3").End(xlUp).Select

Range("C3").End(xlToRight).Select

Combining Methods

Statement: Description
Selection.Offset(1,0).Select Moves the current

selection down one row.
Selection.Resize(Selection.Rows.Count+1).Selec
t

Increases the current
selection by one row.

Selection.Offset(0,3).Resize(4,5).Select Move the current
selection 3 columns to the
right and resize it to 4
rows by 5 columns.

Selection.Offset(1,0).Activate Move the active cell to the
next row in the selection.

Range(ActiveCell , _
ActiveCell.End(xlDown).End(xlToRight)).Select

Extends the selection
from the active cell to the
bottom right corner of the
region.

Virtual Worksheets

A Range object is a virtual worksheet. Cells can be referred
to relative to the Range object, which need not necessarily
coincide with the real worksheet.

 Excel 2007 VBA

© Premier Training Limited Page 39

(A) (B) (C)
(1)
(2)
(3)

Range("B2:D4").Range("B2").Select or
Range("B2:D4").Cells(2,2).Select or

Range("B2:D4").Cells(5).Select

In the example above, Range(“B2:D4”).Range(“B2”).Select
selects B2 on the virtual worksheet, which actually
corresponds to C3 on the real worksheet. However, when
referring to a range within a virtual worksheet it is often better
to refer to the range using the Cells method:

e.g. Range(“B2:D4”).Cells(2,2).Select selects the cell in
the second row and second column of the range.

Range Contents

Data can be assigned to or returned from Range objects
using one of three properties: Value, Formula or
FormulaR1C1. In practice, the Value property can be used
for all assignments.

Ranges can be formatted with the NumberFormat property.

The Text property is a read-only property that returns the
formatted contents of a range.

Value Property

Use the Value property to assign or return text or numbers to
or from a range.
Statement: Description
Range(“A1”).Value = “Ability” Assigns the text Ability to the cell A1.
Range(“A1”).Value = 25 Assigns the number 25 to the cell A1.
Selection.Value = 10 Assigns the number 10 to each of the

cells in the current selection.
ActiveCell.Value = “Ability” Assigns the text Ability to the active

cell.
AnyVariable = ActiveCell.Value Returns the contents of the active cell

to the variable AnyVariable.
ActiveCell.Value = Range(“A1”).Value Returns the contents of cell A1 and

assigns it to the active cell.

 Excel 2007 VBA

© Premier Training Limited Page 40

Entering Formulas and Calculations

Use the Formula property to return a formula from a range.
Use either the Value or Formula property to assign a formula
to a range.
Statement: Description
AnyVariable = ActiveCell.Formula Returns the formula in the active cell

to the variable AnyVariable.
Selection.Value = “=A1*2” Assign the formula =A1*2 to the

current selection.
N.B. As the cell reference is
relative, then only the first cell in the
selection will actually contain =A1*2.

Selection.Value = “=A1*2” Assign the formula =A1*2 to the
current selection.
N.B. As the cell reference is
absolute, each of the cells in the
selection will actually contain
=A1*2.

if a cell contains a formula and it is returned with the value
property then the value of the formula is returned and not the
formula itself.

FormulaR1C1 Property

Use the FormulaR1C1 property to return a formula from a
range. Use either the Value or FormulaR1C1 property to
assign a formula to a range.

Statement: Description
Selection.Value = “=r1c1*2” Same result as using

Selection.Value =“=A1*2”
Selection.Value = “=r[-1]c*2” Assigns a formula that

multiplies the contents of the
cell above in the selection,
by 2.

Selection.Value = “=sum(rc[-5]:rc[-1])" Assigns a formula that sums
the five cells to the right of each
cell in the selection.

NumberFormat Property

Use the NumberFormat property to set or return the numeric
format of a range.

 Excel 2007 VBA

© Premier Training Limited Page 41

Selection.NumberFormat = "£0.00"
Selection.NumberFormat = "d mmmm yyyy"

Input and Message Boxes

Built-In Dialog Boxes

Excel contains approximately 200 built-in dialog boxes. Each
dialog box has a constant assigned to it; these constants all
begin with xlDialog. Use the Object Browser to browse the
list of dialog box constants.

• To view a list of dialog box constants:

1. In the Visual Basic Editor, choose View Object
Browser or press [F2].

2. Select the Excel library and type “xldialog” in the Search
box.

3. Click the Search button

The constants correspond to dialog box names; for example,
the constant for the Format Font dialog box is
xlDialogFormatFont or 150.

This method may fail if an attempt is made to show a dialog
box in an incorrect context. For example, to display the
Format Charttype dialog box the active sheet must be a chart,

 Excel 2007 VBA

© Premier Training Limited Page 42

otherwise the method fails.

The following example would display the built-in dialog box for
Clear:

Sub ShiftF3()
 Application.Dialogs(xlDialogClear).Show
End Sub

Predefined Dialog Boxes

There are three ways to add predefined dialog boxes to an
application, InputBox function, InputBox method and
MsgBox function.

InputBox Function

The InputBox function displays a prompt in a dialog box and
returns the text typed by the user in the supplied text box. It
has an OK button and a Cancel button.

The syntax of the InputBox function is:

InputBox(prompt, title, default, xpos, ypos, helpfile, context)

Prompt is a string of characters displayed as the message in
the dialog box. The maximum length is approximately 1024
characters.

Title is displayed in the title bar of the dialog box. It is
optional and without it nothing is placed in the title bar.

Default is displayed in the text box as the default response if
no entry is made. It is optional and without it the text box
appears empty.

Xpos is the horizontal distance in twips of the left edge of the
dialog box from the left edge of the screen. It is optional and
without it the dialog box is horizontally centred.

20 twips equals 1 point. 72 points equals an inch.

Ypos is the vertical distance in twips of the upper edge of the
dialog box from the top of the screen. It is optional and
without it the dialog box is positioned approximately one third
of the way down the screen.

Helpfile identifies the file used to provide context sensitive
help for the dialog box. If helpfile is specified a Help button is

 Excel 2007 VBA

© Premier Training Limited Page 43

automatically added to the dialog box. Context must also be
specified.

Context is a number indicating which help topic is required
from the helpfile.

The following statement displays the dialog box pictured
below. The default is set to 1994. The user’s response is
stored in a variable called FirstYear.

FirstYear = InputBox (“Enter the first year”, , 1994)

If the user chooses OK or presses Enter the InputBox
function returns whatever is in the text box.

If the user chooses Cancel or presses Escape the InputBox
function returns a zero length string (“”).

InputBox Method

The InputBox method displays a prompt in a dialog box and
returns the data typed by the user in the supplied edit box. It
has an OK button and a Cancel button.

The syntax of the InputBox method is:

Object.InputBox(prompt, title, default, left, top, helpfile,
context, type)

Prompt is displayed as the message in the dialog box. This
can be a string, a number, a date or a Boolean value.

Title is displayed in the title bar of the dialog box. It is
optional and without it nothing is placed in the title bar.

Default is displayed in the edit box as the default response if
no entry is made. It is optional and without it the edit box
appears empty. This value may be a range.

Left is the x position in points of the dialog box from the top
left of the screen. It is optional and without it the dialog box is
horizontally centred.

 Excel 2007 VBA

© Premier Training Limited Page 44

Top is the y position in points of the dialog box from the top
left of the screen. It is optional and without it the dialog box is
positioned approximately one third of the way down the
screen.

Helpfile identifies the file used to provide context sensitive
help for the dialog box. If helpfile is specified a Help button is
automatically added to the dialog box. Context must also be
specified.

Context is a number indicating which help topic is required
from the helpfile.

Type specifies the type of data that can be returned from the
dialog box. It is optional and without it the dialog box returns
text.

The values of type may be:

Type Returns

0 a formula

1 a number

2 text

4 a logical value (true or false)

8 a cell reference as a Range
object

16 an error value such as #N/A

64 an array of values

A sum of the allowable values indicates that the input box can
accept more than one type. For example setting type to 3
indicates that the input box can accept text or numbers.

The following statement displays the dialog box pictured
below. The default is set to 1994, and only numbers will be
accepted. The user’s response is stored in a variable called
FirstYear.

FirstYear = Application.InputBox ("Enter the first year", ,
1994,,,"vba_xl.hlp",,1)

This could also be written as:

FirstYear = Application.InputBox (prompt:="Enter the first
year", _
default:=1994, helpfile:="vba_xl.hlp",type:=1)

The file “vba_xl.hlp” must be located in the Excel directory or

 Excel 2007 VBA

© Premier Training Limited Page 45

a path specified.

If the user chooses the OK button or presses [RETURN] the
InputBox method returns whatever is in the text box.

If the user chooses the Cancel button or presses [ESC] the
InputBox method returns False.

MsgBox Function

The MsgBox function displays a prompt in a dialog box and
waits for the user to choose a button. It returns a value
indicating which button was chosen.

The syntax of the MsgBox function is:

MsgBox (prompt, buttons, title, helpfile, context)

If there is no return value, MsgBox acts as a statement and
the arguments need not be enclosed in parenthesis.

e.g. MsgBox “Hello world!”

Prompt is a string of characters displayed as the message in
the dialog box. The maximum length is approximately 1024
characters.

Buttons is the sum of the numbers used to identify: the
number and type of buttons to display; the icon to use; the
identity of the default button. See below for a list of the
numbers.

Title is displayed in the title bar of the dialog box. It is
optional and without it Microsoft Excel is placed in the title
bar.

Helpfile identifies the file used to provide context sensitive
help for the dialog box. If helpfile is specified a Help button is
automatically added to the dialog box. Context must also be
specified.

Context is a number indicating which help topic is required
from the helpfile.

The buttons argument consists of constants or values from
each of the following three groups:

Number and type of button:

 Excel 2007 VBA

© Premier Training Limited Page 46

Constant Value Display:
vbOKOnly 0 OK button only.
vbOKCancel 1 OK and Cancel buttons.
vbAbortRetryIgnore 2 Abort, Retry, and Ignore

buttons.
vbYesNoCancel 3 Yes, No, and Cancel

buttons.
vbYesNo 4 Yes and No buttons.
vbRetryCancel 5 Retry and Cancel buttons.

Icon style:

Constant Value Display:

vbCritical 16 Critical Message icon

vbQuestion 32 Warning Query icon

vbExclamation 48 Warning Message icon

vbInformation 64 Information Message icon

Default button:

Constant Value Default

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

The value returned by the function depends upon which
button was pressed. The value is returned as a constant,
which is equal in value to a number. The constant or the
value can be tested by the procedure. The constants are
specified by Visual Basic:

Button Selected Constant Value

OK vbOK 1

Cancel vbCancel 2

Abort vbAbort 3

Retry vbRetry 4

 Excel 2007 VBA

© Premier Training Limited Page 47

Ignore vbIgnore 5

Yes vbYes 6

No vbNo 7

The following example performs some statements and then
displays the following message box prompting whether the
commands should be repeated:

If the Yes button is pressed, the macro is repeated, otherwise
the macro stops.

Sub Enter_Sales()
 Do Until Repeat = vbNo
 statements
 Repeat = MsgBox(prompt:="Repeat this
procedure", _
 buttons:=vbYesNo + vbQuestion)
 Loop
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 48

Exercise 4
1. Write a procedure to increase the size of the current
selection by one row and one column.

2. Write a procedure to activate the last cell in the current
selection.

3. Write a procedure to select the current region and then
resize the selection so as not to include the first row and first
column.

4. Write a procedure to select the current column of the
current region.

5. Write a procedure to sum a column of numbers and
extend the selection to include the total at the bottom.

Answers to Exercise 4

Question 1

Sub PlusRowPlusColumn()
 Selection.Resize(Selection.Rows.Count + 1, _
 Selection.Columns.Count + 1).Select
End Sub

Question 2

Sub LastCell()
 Selection.Offset(Selection.Rows.Count - 1, _
 Selection.Columns.Count - 1).Activate
End Sub

Question 3

Sub RegionLessLabels()
 Selection.CurrentRegion.Select
 Selection.Offset(1, 1).Resize(Selection.Rows.Count - 1, _
 Selection.Columns.Count - 1).Select
End Sub

Question 4

Sub CurrentColumn()

 Excel 2007 VBA

© Premier Training Limited Page 49

 Selection.Offset(ActiveCell.CurrentRegion.Row -
ActiveCell.Row). _

 Resize(ActiveCell.CurrentRegion.Rows.Count).Select
End Sub

Question 5

Sub SumCol()
 ActiveCell.Offset(Selection.Rows.Count).Value = _
 "=sum(r[-" & Selection.Rows.Count & "]c:r[-1]c)"
 Selection.Resize(Selection.Rows.Count + 1).Select
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 50

Module 5 - Variables
A variable is a piece of information that is stored while a
procedure is running. Once the information has been stored
the variable can be referred to many times within the
procedure. Each variable in a procedure is referred to by a
unique name. If you don’t declare your variables, they will all
be of Varient Data Types, which is inefficient in terms of
storage and speed, as you see later on.

Assigning Data to Variables

You can assign values to VBA variables. Think of a variable
as a name that you can use to store a particular value.

To assign a value in cell A1 to a variable called Bonus, you
could use the following statement.

Bonus = Worksheets(“Sheet1”).Range(“A1”).Value

It is also sensible to use comments to describe the purpose of
variables so that you and other people can understand what
could be otherwise cryptic names.

Declaring Variables

Variables that are to be used in a procedure are usually
declared at the start of that procedure in order to identify them
and the type of data that they will hold.

In Visual Basic it is not necessary to declare variables, but by
doing so it is possible to speed up the procedure, conserve
memory and prevent errors from occurring.

Because variables do not have to be declared Visual Basic
assumes any variable that has not yet been used to be a new
variable. This means that a misspelt variable name will not
be recognised as such by Visual Basic.

This problem can be avoided by choosing to explicitly declare
every variable. This tells Visual Basic that every variable will
be declared in advance and any others used are therefore
wrong. When Visual Basic encounters an undeclared
variable the following message is displayed:

 Excel 2007 VBA

© Premier Training Limited Page 51

To do this the following statement must be placed at the top
of the Visual Basic module:

Local, Module-Level and Public Variables

A local variable is declared within a procedure and is only
available within that procedure.

A module-level variable is available to all procedures in the
module in which it is declared, but not to any other modules.
Module-level variables are created by placing their Dim
statements at the top of the module before the first procedure.

A public variable is available to every procedure in every
module. Public variables are created by using the Public
statement instead of the Dim statement and placing the
declarations at the top of a module before the first procedure.

To conserve memory, declare variables at the lowest level
possible, e.g. do not declare a variable as public or module-
level if local is sufficient.

Naming Variables

See Appendix A for a recommended variable naming
convention.

Data Types

The data type of a variable determines what type of data the
variable can hold. For example a variable could hold an
integer, a string or a date.

The data type is specified in the Dim statement:

Dim variable As type

If no type is specified the variable will be given the Variant
data type.

 Excel 2007 VBA

© Premier Training Limited Page 52

Variable Scope

A Variant variable can hold numeric data, character text or a
date. It can hold different types of data at different points in
the same procedure. The current data type of the variable
depends on the last value assigned to the variable.

Dim Anydata ‘ Assumes Variant variable

Anydata = "30" ‘ Anydata contains the string
"30"

Anydata = Anydata - 12 ‘ Anydata becomes numeric
and contains 18

Anydata = Anydata & "XYZ" ‘Anydata becomes a string
containing "18XYZ"

There is no need to convert the data type before performing a
calculation on the variable, however it would not be possible
to perform an arithmetic operation on the variable if it does
not contain data that is easily interpreted as a number, for
example “18XYZ”

Specific Data Types

If a specific data type is assigned to a variable, the variable
will only be able to hold that type of data. This can make a
procedure easier to write and decode as it will always be
known what the restrictions are for that variable.

Numeric Data

There are several different data types that can be specified to
hold numeric data: Integer, Long, Single, Double and
Currency.

Integer and Long variables hold whole numbers.

Integer variables can hold values between -32,768 and
32,767.

Long variables can hold values between 2,147,483,648 and
2,147,483,647.

 Excel 2007 VBA

© Premier Training Limited Page 53

Integers store less memory than variants and operations can
be performed faster.

Single, Double and Currency variables can hold whole or
part numbers.

Single and Double variables are held as floating point and
are used for very large or very small numbers. They have
much larger ranges than currency but may incur small
rounding errors.

Single variables can hold values between -3.402823E38 and
-1.401298E-45 for negative values and between 1.401298E-
45 and 3.402823E38 for positive values.

Double variables can hold values between -
1.79769313486232E308 and -4.94065645841247E-324 for
negative values and between 4.94065645841247E-324 and
1.79769313486232E308 for positive values.

Decimal variables with 28 places to the right of the decimal;
smallest non-zero number is +/-
0.0000000000000000000000000001

Object variables are stored as 32-bit (4-byte) addresses that
refer to objects. Using the Set statement, a variable declared
as an Object can have any object reference assigned to it.

Currency variables hold the data as fixed point. This
provides complete accuracy and is particularly useful for
additions and subtractions but may not be so efficient for
multiplication and division involving very large or very small
numbers.

Currency variables can have up to 15 figures to the left of the
decimal point, and up to 4 figures to the right.

Currency variables can hold values between -
922,337,203,685,477.5808 and 922,337,203,685,477.5808.

Character Data

A variable that is to hold character information is declared as
String. String variables can hold up to 65,535 characters.

By default a string variable is of variable length and the length
of the variable depends on the length of the string of data that
is stored in it.

Strings can be declared to have a fixed length:

 Excel 2007 VBA

© Premier Training Limited Page 54

Dim variable As String * size

To declare a string variable called name that is always of
length 50:

Dim name As String * 50

If the data string that is assigned to the name variable is
longer than 50 characters, the data is truncated. If the data
string that is assigned to the name variable is shorter than 50
characters, the rest of the variable is filled with blanks.

Date and Time

Dates and times are held in variables that are of Date type.
They are held as numbers. The number to the left of the
decimal point represents the date and the number to the right
of the decimal point represents the time. Midnight is 0, and
midday is 0.5.

Any recognisable literal date or time can be assigned to a
date variable, enclosed in # symbols.

For example:

Dim AnyDate As Date

AnyDate = #25/6/94 13:20#
AnyDate = #January 12, 1994 3:15am#
AnyDate = #15 March 1994#
AnyDate = #16:15#

Date variables can hold dates between January 1 0100 and
December 31 9999, and times between 0:00:00 and
23:59:59.

Boolean

Boolean variables hold either True or False. This is useful
when something has only two possible values. Instead of
testing for the specific values, the Boolean variable can be set
to true or false and it’s value tested at any necessary point in
the procedure.

True and False values are often implied:

If Male Then ‘Tests if Male is equal to True

 Excel 2007 VBA

© Premier Training Limited Page 55

If Not Male Then ‘ Tests if Male is equal to False

Arrays

An array is a special type of variable that can contain many
elements of information simultaneously.

If an array is declared with a specific data type then every
element in the array must be of that type. However it is
possible to declare an array of variant variables.

An array can have fixed dimensions, in which case the
number of elements that the array can contain is included in
the declaration or the array can be dynamic and the size reset
when required in the procedure

To declare an array:

Dim variable (dimension) As Type

The following creates an array called AnArray that has 15
variant variables contained within it:

Dim AnArray (14)

The specified dimension is the upper bound of the array. By
default the lower bound of an array is 0 and thus the array
has 15 elements. This is called a zero-based array.

It is possible to change the default lower bound by using the
Option Base command before any declaration in a module.

For example the following statement would make the lower
bound equal to 1:

Option Base 1

Alternatively, the lower bound can be provided when
declaring the array using the To keyword:

Dim AnArray (1 To 15)

To declare a dynamic array, the dimension list should be left
empty:

Dim AnArray ()

The array size can then be set at an appropriate point in the
procedure using the ReDim statement, perhaps using the
value of another variable.

 Excel 2007 VBA

© Premier Training Limited Page 56

The following sets the size of the array to be the value of the
variable NumberFound:

ReDim AnArray (1 To NumberFound)

Using the optional keyword Preserve after ReDim preserves
the data in an existing array when it is redimensioned.

Data is assigned to or returned from an array element by
referring to the element’s position within the array.

The following sets the second element of AnArray to hold the
number 56:

AnArray (2) = 56

An array can have up to 60 dimensions.

The following declares a two dimensional 5 by 3 array:

Dim AnArray (4, 2)

To assign data to the third element of the second dimension:

AnArray (2, 1) = 56

Objects

An Object variable can have objects assigned to it using the
Set statement. This can make a procedure easier to read
and quicker to write.

The following assigns a worksheet object to a variable:

Dim Sales As Object
Set Sales = Worksheets("Sales")

Constants

A constant is a named item that retains a constant value
throughout the execution of a program, as opposed to a
variable, whose value can change during execution.
Constants are defined using the Const statement. Constants
can be used anywhere in procedures in place of actual
values. A constant may be a string or numeric literal, another
constant, or any combination that includes arithmetic or
logical operators except Is. For example:

 Excel 2007 VBA

© Premier Training Limited Page 57

Sub BackgroundColour()
 Const Red = 3
 Selection.Interior.ColorIndex = Red
End Sub

Using Option Explicit

Option Explicit

Variables are then declared using the Dim statement:

Dim variablename

The variable exists until the end of the procedure is met.

To save time the Option Explicit setting can be automatically
set in all modules.

• To insert Option Explicit automatically in all new modules:

1. In the Visual Basic Editor, choose Tools Options.

2. Select the Editor tab.

3. Select Require Variable Declaration.

4. Choose the OK button.

This command does not add “Option Explicit” to existing
modules, only to new ones.

It is possible to declare variables without using Option
Explicit. However, Visual Basic does not then notify any
undeclared variables.

 Excel 2007 VBA

© Premier Training Limited Page 58

Exercise 5
1. Start a new workbook.

2. Enter the following data on a worksheet:

 A B C D E
1 Week1 Week2 Week3 Week4
2 Sales
3 Costs
4 Profit

3. Enter a formula at B3 to calculate Costs at 20% of Sales
in B2. Fill the formula across to E3.

4. Enter a formula at B4 to calculate Profit as Sales (B2)
less Costs (B3). Fill the formual across to E4.

5. Rename the worksheet “Sales”.

6. Write a procedure named InputSales to prompt a user to
enter the sales figures for weeks 1 to 4 of a given month:

a) Declare a string variable MonthOfSales to hold the month
of the sales.

b) Declare a variant array SalesData to hold the four sales
figures.

c) Use the InputBox function to prompt the user for the
month of sales and store the answer in the variable
MonthOfSales.

d) Use the InputBox function to prompt the user for the four
weeks sales figures. Store each of the answers in the
elements of the SalesData array.

e) Enter the contents of the MonthOfSales variable in the
range A1 in upper case (use the Visual Basic function
UCase()).

f) Enter the sales figures from the SalesData array in the
range B2:E2.

g) Auto-fit the width of columns A to E. This command can
be recorded in to the existing procedure.

h) Rename the module sheet “M_Sales”.

 Excel 2007 VBA

© Premier Training Limited Page 59

7. Assign the InputSales macro to a macro button on the
Sales worksheet.

8. Save the workbook as SALES.XLS.

 Excel 2007 VBA

© Premier Training Limited Page 60

Answers to Exercise 5

Option Explicit

Sub InputSales()
 Dim MonthOfSales As String
 Dim SalesData(1 to 4)
 MonthOfSales = InputBox(prompt:= "Enter month of
sales", _
 title:= "Month")
 SalesData(1) =InputBox(prompt:= "Enter sales for week
1")
 SalesData(2) =InputBox(prompt:= "Enter sales for week
2")
 SalesData(3) =InputBox(prompt:= "Enter sales for week
3")
 SalesData(4) =InputBox(prompt:= "Enter sales for week
4")
 Range("A1").Value = UCase(MonthOfSales)
 Range("B2:E2").Cells(1).Value = SalesData(1)
 Range("B2:E2").Cells(2).Value = SalesData(2)
 Range("B2:E2").Cells(3).Value = SalesData(3)
 Range("B2:E2").Cells(4).Value = SalesData(4)
 Range("B2:E2").NumberFormat = "£0.00"
 Columns("A:E").EntireColumn.AutoFit
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 61

Module 6 - Control
Structures and Loops
A recorded procedure (macro) is executed statement by
statement from the beginning to the end. It is possible
however to use certain statements to change the flow of
execution. For example, different sections of code can be
executed depending on a condition or a section of code can
be repeated a specified number of times or until a condition is
met. These statements are called control structures as they
control the flow of the procedure.

IF, Then, Select Case, Do, For and For
Each, GoTo

Conditional control structures perform a block of statements
depending upon the result of a condition.

If...Then...Else

The syntax of the If...Then...Else control structure is:

If condition Then
 statements to perform if condition is true
Else
 statements to perform if condition is false
End If

When Visual Basic meets the If statement it evaluates the
condition as true or false.

If the condition is evaluated as true, execution of the
procedure continues with the statements following the If until
the Else statement is met. At this point execution continues
from the command after the End If statement.

If the condition is evaluated as false Visual Basic looks for the
Else statement and continues execution from the command
after the Else statement until it meets the End If statement.
At this point execution continues from the command after the
End If statement.

Only one set of statements is performed.

The Else part of the structure is optional and may not always

 Excel 2007 VBA

© Premier Training Limited Page 62

be necessary in which case the structure would be:

If condition Then
 Statements to perform if condition is true
End If

In this instance the statements will only be performed if the
condition is true otherwise execution continues with
statements after the End If statement.

If only one statement needs to be executed when the
condition is true, the control structure can be written as:

If condition Then single statement to perform if condition is
true

If several conditions are to be tested a series of ElseIf
statements can be included:

If condition1 Then
 Statements to be performed if condition1 is true
ElseIf condition2 Then
 Statements to be performed if condition2 is true
ElseIf...
...
Else
 Statements to be performed if none of the conditions are
true
End If

Visual Basic evaluates condition1. If condition1 is true Visual
Basic executes the statements following the If statement until
it meets an ElseIf, Else or End If statement at which point
control is passed to the statements below the End If.

If condition1 is not true Visual Basic evaluates condition2,
repeating the above procedure, and so on until a condition is
found to be true.

If no conditions are true the statements after the Else
statement are executed, if it exists.

Select Case

Select Case can be used as an alternative to
If...Then...ElseIf where several conditions are to be tested.
For Select Case the same expression has to be evaluated in
every instance whereas for If...Then...ElseIf each condition
can involve different variables.

 Excel 2007 VBA

© Premier Training Limited Page 63

The syntax of the Select Case control structure is:

Select Case expression
Case value1
 statements
Case value2
 statements
...
Case Else
 statements
End Select

A single expression is evaluated at the top of the Case
structure. Each case is then checked for this value, and the
appropriate statements executed. Control then passes to the
statement below the End Select statement. If no Case
statement holds the evaluated value then the statements
below the Case Else statements are executed. Case Else is
optional.

Looping Control Structures

Do…Loop

The Do...Loop structure has two different syntax’s:

1. Do While...Loop

Do While condition
 statements
Loop

When Visual Basic meets the Do While statement it
evaluates the condition.

If the condition is false execution continues with the
statements after the Loop statement.

If the condition is true Visual Basic performs the statements
after the Do While statement. On meeting the Loop
statement Visual Basic re-evaluates the condition and repeats
the above process.

The statements inside the loop are executed until the
condition is no longer true. If the condition is not true initially
the statements will never be executed.

 Excel 2007 VBA

© Premier Training Limited Page 64

The statements inside a Do While...Loop structure must
contain a way in which the condition can become false
otherwise the loop will continue indefinitely!

2. Do Until...Loop

Do Until condition
 statements
Loop

When Visual Basic meets the Do Until statement for the
FIRST time it continues with the statements directly below
until it meets the Loop statement. On meeting the Loop
statement Visual Basic evaluates the condition

If the condition is false execution continues with the
statements after the Loop statement.

If the condition is true Visual Basic performs the statements
after the Do Until statement until it meets the Loop
statement. On meeting the Loop statement Visual Basic re-
evaluates the condition and repeats the same process.

The statements inside the loop are executed until the
condition is no longer true. The statements will always be
executed at least once.

The statements inside a Do Until..Loop structure must
contain a way in which the condition can become true
otherwise the loop will continue indefinitely!

Do Until condition...Loop is exactly the same as Do While
Not condition...Loop

Exit Do

The Exit Do statement can be used any number of times
within a Do...Loop structure allowing a way out of the loop.
On meeting the Exit Do command execution is continued
with the statements after the Loop statement.

For...Next

The For...Next control structure allows a series of statements
to be repeated a given number of times.

The syntax of the For...Next structure is:

For counter = start To end [Step step]
 statements

 Excel 2007 VBA

© Premier Training Limited Page 65

Next

The structure repeats the statements for a number of times
depending on the values of start, end and step.

Counter is a variable containing a number. The initial value of
counter is set equal to start. Each time the block of
statements is executed counter is incremented by the value of
step. Step can be positive or negative.

If step is positive the statements will be executed provided the
value of counter is less than or equal to the value of end,
otherwise execution continues with the statements after the
Next statement.

If step is negative the statements will be executed provided
the value of counter is greater than or equal to the value of
end, otherwise execution continues with the statements after
the Next statement.

Step has a default value of 1.

For Each...Next

The syntax of the For Each...Next structure is:

For Each element In group
 statements
Next

The Structure repeats the statements for each element in an
array or collection

The following example converts every cell in the selection to
upper case by using the Excel function UCase:

Sub UpperCase()
 For Each Item In Selection
 Item.Value = UCase(Item.Formula)
 Next
End Sub

“item” is an object variable.

The following example names all the worksheets in the active
workbook Week 1, Week 2 etc.:

Sub NameSheets()
 Counter = 1
 For Each Sheet in Worksheets

 Excel 2007 VBA

© Premier Training Limited Page 66

 Sheet.Name = "Week " & Counter
 Counter = Counter + 1
 Next
End Sub

The For Each...Next structure is particularly useful for
referring to collections of controls in customised dialog boxes.

Exit For

The Exit For statement can be used any number of times
within a For...Next structure or a For Each...Next structure
allowing another way out of the loop. On meeting the Exit
For command, execution is continued with the statements
after the Next statement.

Non-Structured Statements

GoTo

The GoTo statement causes the programme flow to branch
unconditionally to a specified line within the same procedure.
Lines are indicated by means of a label; a piece of text
followed by a [:] (colon).

Sub TestBranch()
 ...
 If Number = 1 Then GoTo Finish
 ...
Finish:
 MsgBox "Macro ended"
End Sub

GoTo statements are difficult to read and debug. Use
structured controls whenever possible.

Sub Procedures

It is possible to call one procedure from within another
procedure by entering the procedure name as a statement.

This is particularly useful for a series of statements that are
frequently required. The statements can be written as a
separate procedure and the procedure called whenever the
statements are required.

 Excel 2007 VBA

© Premier Training Limited Page 67

It also makes a procedure easier to read and decode if it
performs just one or two tasks, calling other procedures as
required.

If one procedure calls a second procedure, Visual Basic first
looks for the second procedure in the module containing the
first one. If the second procedure can not be found in the
same module then Visual Basic looks in the other modules in
the same workbook and then in other workbooks to which
reference has been established (see below).

Calling Procedures in Another Workbook

Procedures can only be called from another workbook if a
reference from Visual Basic to that workbook is established.

• To establish a reference to another workbook:

1. In the Visual Basic Editor, open the workbook to which
the reference is to be established and the workbook from
which the reference is to be established.

2. In the Project Explorer window, select the project from
which the reference is to be established.

3. Choose Tools References.

4. Check the box next to the VBAProject for the reference.

5. Choose the OK button.

 Excel 2007 VBA

© Premier Training Limited Page 68

Passing Arguments to Subprocedures

Subprocedures are a convenient way or “reusing” the same
portion of procedure code more than once. However, the
subprocedure may act differently depending upon where it is
called from. This is achieved by “passing” the subprocedure
additional information when it is called.

In the following example text is passed to a subprocedure
“Alert” which is then used as an argument by the MsgBox
statement:

Sub InputNumber()
 Number = InputBox("Enter a number between 100 and
200")
 Select Case Number
 Case Is < 100
 Alert Text:="too small"
 Case Is > 200
 Alert Text:="too big"
 Case Else
 Alert Text:="OK"
 End Select
End Sub

Sub Alert(Text)
 Beep
 MsgBox "Number is " & Text
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 69

Exercise 6
1. In the workbook SALES.XLS on the module M_Sales:

a) Copy and paste the procedure InputSales, renaming the
copy InputSales2.

b) In the procedure InputSales2, replace the four InputBox
statements prompting for the sales figures with a single
statement inside a FOR..NEXT loop. Include the week
number in the prompt.

c) In the procedure InputSales2, replace the four statements
entering the sales figures with a single statement inside the
existing FOR..NEXT loop.

2. Choosing the Cancel button in an InputBox dialog box
does not cancel the procedure, it only dismisses dialog box.
Insert two lines in the InputSales2 procedure so that if a user
chooses Cancel in an InputBox dialog box the procedure is
exited.

3. Start a new workbook and insert a new module:

a) Write a procedure named LowerCase to change the case
of each cell in a selection to lower case.

b) Write a procedure named ProperCase to change the case
of each cell in a selection to proper (title) case.

c) Write a procedure named DelRows to give the user the
opportunity to delete the active row in response to a MsgBox
function prompt. Build a DO UNTIL...LOOP into the
procedure so that it continues until the user chooses Cancel.

d) Save the workbook as CONTROLS.XLS (this workbook
will be needed again later in the course).

4. Insert a new module in the CONTROLS.XLS

a) Record a procedure named Colours to change the interior
colour and font colour of a selection of cells.

b) Write a procedure named ChangeColours that calls the
procedure Colours passing it different arguments for the
interior and font colours depending upon whether the selected
cell contains a number above or below 10. Modify the
Colours procedure accordingly.

c) Modify the ChangeColours and Colours procedures with

 Excel 2007 VBA

© Premier Training Limited Page 70

a For Each...Next loop so that they will work on a selection of
cells.

 Excel 2007 VBA

© Premier Training Limited Page 71

Answers to Exercise 6

Question 1

Sub InputSales2()
 Dim MonthOfSales As String
 Dim SalesData(1 to 4)
 Dim WeekNumber As Integer
 MonthOfSales = InputBox(prompt:= "Enter month of
sales", _
 title:= "Month")
 For WeekNumber = 1 To 4
 SalesData(WeekNumber) =InputBox(prompt:= _
 "Enter sales for week " _ & WeekNumber)
 Range("B2:E2").Cells(WeekNumber).Value = _
 SalesData(WeekNumber) *
 Next
 Range("A1").Value = UCase(MonthOfSales)
 Columns("A:E").EntireColumn.AutoFit
End Sub

Question 2

Sub InputSales2()
 Dim MonthOfSales As String
 Dim SalesData(1 to 4)
 Dim WeekNumber As Integer
 MonthOfSales = InputBox(prompt:= "Enter month of
sales", _
 title:= "Month")
 If MonthOfSales = "" Then Exit Sub
 For WeekNumber = 1 To 4
 SalesData(WeekNumber) =InputBox(prompt:= _
 "Enter sales for week " _ & WeekNumber)
 If SalesData(WeekNumber) = "" Then Exit Sub
 Range("B2:E2").Cells(WeekNumber).Value = _
 SalesData(WeekNumber) *
 Next
 Range("A1").Value = UCase(MonthOfSales)
 Columns("A:E").EntireColumn.AutoFit
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 72

* The following statement can also be used outside of the
For loop:

Range("B2:E2").Value = SalesData

Question 3

Sub LowerCase()
 For Each Cell In Selection
 Cell.Value = LCase(Cell.Formula)
 Next
End Sub

Sub ProperCase()
 For Each Cell In Selection
 Cell.Value = Application.Proper(Cell.Formula)
 Next
End Sub

Sub DelRows()
 Do Until Response = vbCancel
 Response = MsgBox("Delete row " _
 & ActiveCell.Row & "?", 3)
 If Response = vbYes Then
 ActiveCell.EntireRow.Delete
 Else
 ActiveCell.Offset(1, 0).Select
 EndIf
 Loop
End Sub

Question 4

Sub Colours()
 With Selection.Interior
 .ColorIndex = 5
 .Pattern = xlSolid
 End With
 Selection.Font.ColorIndex = 3
End Sub

Sub ChangeColours()
 Const Red = 3, Blue = 5
 If ActiveCell.Value > 10 Then
 Colours inside:=Blue, text:=Red

 Excel 2007 VBA

© Premier Training Limited Page 73

 Else
 Colours inside:=Red, text:=Blue
 End If
End Sub

Sub Colours(inside, text)
 With Selection.Interior
 .ColorIndex = inside
 .Pattern = xlSolid
 End With
 Selection.Font.ColorIndex = text
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 74

Dim Cell as Object 'declare as module level variable
Sub ChangeColours()
 Const Red = 3, Blue = 5
 For Each Cell In Selection
 If IsNumeric(Cell.Value) And Not
IsEmpty(Cell.Value) Then
 If Cell.Value > 10 Then
 Colours inside:=Blue, text:=Red
 Else
 Colours inside:=Red, text:=Blue
 End If
 End If
 Next Cell
End Sub

Sub Colours(inside, text)
 With Cell.Interior
 .ColorIndex = inside
 .Pattern = xlSolid
 End With
 Cell.Font.ColorIndex = text
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 75

Module 7 - Objects,
Properties, Methods, Events
and Error Handling
Errors

It is only possible to verify that code is performing correctly if
it is tested with every possible combination of input and if all
output is checked. Visual Basic provides various debugging
tools to help locate the source of any errors that are detected.
These tools help to identify exactly where something has
gone wrong. For example, Step Into, Step Over and Step
Out allow the flow of execution to be followed statement by
statement, Break Mode allows execution to be halted at a
given point and the value of an expression displayed.

Types of Errors

There are various types of errors that can occur when writing
and running a procedure. These can be broadly separated
into three areas: language errors, run-time errors and logic
errors.

Language errors occur when the code is written incorrectly.
Visual Basic detects these errors when the insertion point is
moved away from the line while writing the procedure or just
before the procedure is run. One way to help minimise
language errors is by using the Option Explicit statement.
With this statement included Visual Basic will only accept
variable names that have been declared and will detect any
errors in the spelling of variable names.

Run-time errors occur and are detected by Visual Basic
when a statement tries to perform an operation that cannot be
carried out. When this happens Visual Basic halts execution
of the macro with a series of available options.

For example, the following error may occur when a statement
refers to an object that does not exist:

 Excel 2007 VBA

© Premier Training Limited Page 76

The type of error that has occurred is described using an
error number and a description. Various options are
available:

Choose the End button to end the macro at that point.

Choose the Debug button to highlight the offending code in
the Visual Basic Editor.

Choose the Help button for help about the type of error.

Logic errors are errors that occur when the code appears to
perform correctly but doesn’t produce the correct result.
Logic errors can also produce run-time errors. For example a
particular case may be missing from a Select Case
statement, or a variable may contain a different value to the
one expected causing another variable to be set incorrectly at
a later point in the procedure. The larger a procedure is the
more difficult it is to detect logic errors and it is for the
detection of logic errors that the debugging tools are
particularly useful.

Capturing Errors

If an error occurs whilst a macro is running, a run-time error, it
will either cause the macro to fail or make it act unpredictably,
unless the error is trapped in some way.

The simplest way to deal with errors is to use the On Error
statement which can take three forms. The error “trap” is
“turned on” prior to the likely occurrence of an error and “sits
in wait” until an error occurs or until the trap is “turned off”.

Notice that an error-handling routine is not a Sub or Function
procedure. It is a block of code marked by a line label or line
number. To prevent the block of code from being executed,
when no error has occurred, it must be bypassed, or the
procedure or function ended, before it is reached (see below).

 Excel 2007 VBA

© Premier Training Limited Page 77

Manipulating Errors

On Error Goto Label

If this statement is placed before the instruction that causes
the error, control of the macro branches to the line with the
label.

The number of any error generated is returned by the Err
function.

Resume and Resume Next

The Resume statement returns control to the line at which the
error occurred and attempts to run the statement again.

The Resume Next statement passes control in the macro to
the line following the line that caused the error.

Using a Resume statement anywhere except in an error-
handling routine causes an error.

On Error Goto 0

This statement disables a previous On Error Resume Next or
On Error Goto Label statement. When the next error occurs
an error message will be generated and the macro will fail.

Err Function

When On Error Resume Goto label is used to trap errors the
number of any error is returned by the Err function. Err acts
like a public variable. The value of Err can be tested and
acted upon.

Error() Function

The Error function returns message text corresponding to an

 Excel 2007 VBA

© Premier Training Limited Page 78

error number.

Error and Err Statements

The Error statement simulates an error, sets the value of Err
and interrupts the macro. The Err statement sets the value of
Err but does not simulate an error or interrupt the macro.

Error Handling Example

In the following example an error trap is set to prevent the
macro failing if the active workbook is saved as DATA.XLS to
drive A. If there is no disk in drive A then an error number
1004, with associated message “Cannot access ‘A:’ ”, occurs.
Control is passed to the line ErrHandle. The error handling
code tests the Error() function to see if no disk was present
(N.B. cannot test the value of Err as this returns 1004 for
other reasons). A message box is displayed informing the
user of the original error message and asking them to insert a
disk. When the OK button is chosen the procedure resumes
at the line that caused the error, i.e.
ActiveWorkbook.SaveAs.

If a disk is present in A but the file DATA.XLS already exists
on that disk Excel displays a message asking if the file is to
be overwritten. If the user chooses the No or Cancel buttons
error 1004 occurs but the value of Error is different. In this
case, the error handling code displays a message to inform
the user that the file has not been saved and the procedure
resumes at the line after the one that caused the error.

When the file is saved successfully and no error occurs, then
the error handling code is not executed, or executed again,
because the macro is exited before it is reached.

Sub ErrorTest()
 On Error GoTo ErrHandle
 ActiveWorkbook.SaveAs Filename: = "A:\DATA.XLS"
 On Error GoTo 0
 Exit Sub
ErrHandle:
 If Error() = "Cannot access ‘A:’." Then
 MsgBox Error() + "Insert floppy disk in drive A."
 Resume
 Else
 MsgBox "File not saved."
 Resume Next
 End If
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 79

Module 8 – Debugging

Break Points

Execution of a procedure can be halted at a specific point by
placing a breakpoint into the code. When a breakpoint is
met Visual Basic enters break mode. The values of variables
can then be viewed and execution can be continued in step
mode. Alternatively, execution can be normally resumed and
the procedure will continue running until the next breakpoint is
met, or execution ends normally.

Setting Breakpoints

• To set or remove a breakpoint:

1. Activate the module containing the procedure where the
breakpoint is to be placed/removed.

2. Position the insertion point anywhere within the statement
where the breakpoint is to be placed/removed.

3. Choose Debug Toggle Breakpoint, choose the

Toggle Breakpoint button from the Edit toolbar or press
[F9].

Quick Watch

Instant watch can be used to display the value of any
expression while in break mode.

• To display the value of an expression with Instant Watch:

1. When in break mode, select the expression to be
evaluated.

2. Choose the Quick Watch button from the Debug
toolbar.

The Quick Watch dialog box is displayed:

 Excel 2007 VBA

© Premier Training Limited Page 80

Choose the Add button to add the expression to the Watch
pane of the debug window. The expression can then be
watched for the rest of the procedure.

Stepping

Stepping can be used to step through each statement of a
procedure while in break mode. On selecting one of the step
options the current statement is executed and then the
procedure is halted again. This enables the values of any
expressions to be displayed at any time, the flow of execution
to be observed and the exact point at which an error occurs to
be spotted.

There are three ways to step through a procedure, Step Into,
Step Over and Step Out. These are selected by choosing
the appropriate button on the Debug toolbar.

Step Into will step through all statements including any
that are in a called procedure. When the end of the called
procedure is reached Step Into returns to the procedure that
contained the call.

Step Over is identical to Step Into except that it treats
any called procedure as one statement to be executed. It
executes every statement in the called procedure before
halting at the statement following the call.

Step Back executes the remaining lines of a procedure in
which the current execution point lies.

 Excel 2007 VBA

© Premier Training Limited Page 81

Module 9 - Forms (dialog
boxes)

Dialog boxes and forms allow applications to interact with
their users. A built-in Excel dialog box can be used in a
procedure. A predefined dialog box can be used, allowing a
quick and easy way to request information from or display
information to the user. Custom forms can also be defined
incorporating various controls including selection lists and
check boxes allowing more extensive interaction.

Controls can also be added to worksheets and chart sheets to
create custom forms.

Custom Forms

Custom forms can be created on worksheets, chart sheets or
in the Visual Basic Editor.

Controls

Custom forms are created by adding controls to a worksheet,
chart sheet or user defined form. Buttons, text boxes, list
boxes and check boxes are all examples of controls. It is
even possible to use controls from outside of Excel. These
type of controls can be especially written and are known as
ActiveX controls.

The simplest way to create a form is to place controls directly
onto a worksheet so that they are near to relevant cells and
those cells recalculate automatically. This is particularly
useful if only one control is required.

Forms designed in the Visual Basic Editor can be much more
sophisticated.

Worksheet Forms

Toolbar Controls

 Excel 2007 VBA

© Premier Training Limited Page 82

Controls are placed on a worksheet using the Forms toolbar:

Label
Box

Check

Combination
Box

List-Edit

Group List
Box

Scroll
Bar

Control Toggle
Properties Grid

Box
Edit Create

Button Button
Option Drop-

Down

Combination
Drop-Down Edit

Spinner Code
Edit Run

Dialog

• To place a control onto a worksheet:

1. Click the button for the required control on the Forms
toolbar.

2. On the worksheet, drag until the control is the required
size and shape and release the mouse button.

The following controls are available from the Forms toolbar:

Control Description

Label Text that is displayed to the user, including
names, instructions etc.

Edit Box A box in which the user can enter text, numbers or
cell references.

Group Box A border containing a group of buttons or other
controls.

Button A command button such as OK or Cancel.

Check Box A box indicating whether an option is set.

Option Button A button for selecting one of a group of mutually
exclusive options. A group of option buttons
should be placed in a group box.

List Box A list of options, one or more of which can be
selected.

Drop-Down A single uneditable text box with an arrow, paired
with a drop-down list that appears when the user
selects the arrow.

Combination
List-Edit

A single editable text box combined with a list box.

Combination
Drop-Down Edit

An empty edit box with an arrow, paired with a
drop-down list that appears when the user selects
the arrow.

Scroll Bar A horizontal or vertical scroll bar for changing
numeric values.

 Excel 2007 VBA

© Premier Training Limited Page 83

Spinner A pair of buttons for incrementing or decrementing
a displayed value.

The Edit Box and Combination list boxes can not be inserted
on a worksheet.

Setting the Properties of a Control

Certain default properties are assigned to each control.
Some of these properties can be changed using the Control
Properties button on the Forms toolbar, or the Format menu.

• To change a property:

1. Select the control.

2. Choose Format Control, or choose the Control
Properties button on the Forms toolbar.

3 Change the required property.

4. Choose the OK button.

Cell Links

Check box, option button, list box, drop-down, scroll bar and
spinner controls have a Cell Link property. A value is
returned to the Cell Link corresponding to the item or option
selected or set by the user in the control.

The value in the cell link may be directly of use in the
worksheet or it may need to be evaluated in a formula
containing functions such as IF(), INDEX() or lookup.

The cell link need not be on the same worksheet as the
control.

Input Ranges

List box and drop-down controls have an Input Range
property. This property is used to set the list of values to
appear in the list box.

Group Boxes and Option Buttons

 Excel 2007 VBA

© Premier Training Limited Page 84

Option buttons are normally arranged in groups. A user can
choose one option from a group; the options are mutually
exclusive.

To create a group of option buttons, first add a group box of
sufficient size to hold all of the option buttons it is to contain,
then add the required option buttons into the group. Make
sure the options do not stretch outside of the group box.

When a user select an option button in the group a value is
returned to the cell link corresponding to order of the option
button in the group. For example, if a user chose the Single
option from the following group, the value 2 would be returned
to the cell link:

The order of the options buttons is the order in which they
were added to the group.

Lists and Drop-Down Lists

To create a list or drop-down list on a worksheet, first type the
list of values to appear in the list on some other part of the
worksheet or in another worksheet or workbook.

Add a list or drop-down control and set the input range
property to the cell range containing the typed list. The value
returned to the cell link corresponds to the value’s position in
the list. For example, the second value in the list would return
the value 2 to the cell link.

User Defined Forms

Use the following procedure to create a user defined form or
custom dialog box:

1. Create a UserForm

 In the Visual Basic Editor, choose Insert UserForm.

2. Add controls to the UserForm

 Excel 2007 VBA

© Premier Training Limited Page 85

 Find the control to add in the Toolbox and drag the
control onto the form.

3. Set control properties

 Right-click a control in design mode and click Properties
to display the Properties window.

4. Initialise the controls

 Initialise controls in a procedure before the form is shown,
or add code to the Initialize event of the form.

5. Write event procedures

 All controls have a predefined set of events. For
example, a command button has a Click event that occurs
when the user clicks the command button. Write event
procedures that run when the events occur.

6. Show the dialog box

 Use the Show method to display a UserForm.

7. Use control values while code is running.

 Some properties can be set at run time. Changes made
to the dialog box by the user are lost when the dialog box is
closed.

Adding Form Controls

To display the Toolbox, choose View Toolbox or click the
Toolbox button on the Standard toolbar.

The Toolbox contains a similar list of controls to the Excel
Forms toolbar. Additional controls include: TabStrip,
MultiPage, RefEdit and Image.

Use the Format commands to align and arrange the controls
on the form.

 Excel 2007 VBA

© Premier Training Limited Page 86

Form Control Properties

Setting Form Control Properties

Each form control has a list of properties that can be
displayed in the Properties window. Different controls have
different properties.

Many properties can be modified by directly formatting the
control on the form, others are set from the Properties
window. Properties can also be set or modified at run-time,
i.e. when the form is displayed.

• Data Properties

Some of the most useful properties can be set in the Data
category.

The RowSource property specifies the source, providing a
list for a ComboBox or ListBox. The RowSource property
accepts worksheet ranges from Excel.

The ColumnSource property identifies the data location used
to set or store the Value property of a control. The
ControlSource property identifies a cell; it does not contain
the data stored in the cell. If the Value of the control is
changed, the change is automatically reflected in the linked
cell. Similarly, if the value of the linked cell is changed, the
change is automatically reflected in the Value of the control.

The default value for ControlSource is an empty string. If

 Excel 2007 VBA

© Premier Training Limited Page 87

ControlSource contains a value other than an empty string, it
identifies a linked cell. The contents of that cell is
automatically copied to the Value property when the control is
loaded.

Form Control Naming Convention

See Appendix A for a recommended naming convention for
form controls.

Form Initialisation

Initialise controls at run time by using Visual Basic code in a
macro. For example, fill a list box, set text values or set
option buttons.

The following example uses the AddItem method to add data
to a list box and then it sets the value of a text box and
displays the form UserForm1:

Private Sub GetUserName()
 With UserForm1
 .lstWeekDays.AddItem "Monday"
 .lstWeekDays.AddItem "Tuesday"
 .lstWeekDays.AddItem "Wednesday"
 .lstWeekDays.AddItem "Thursday"
 .lstWeekDays.AddItem "Friday"
 .lstWeekDays.AddItem "Saturday"
 .lstWeekDays.AddItem "Sunday"
 .txtSalesPerson.Text = "Fred Bloogs"
 .Show
 End With
End Sub

Use code in the Initialize event of a form to set initial values
for controls on the form. An advantage to setting initial
control values in the Initialize event is that the initialisation
code stays with the form.

Control and Dialog Box Events

UserForms and controls have a predefined set of events. For
example, a command button has a Click event that occurs
when the user clicks the command button and UserForms
have an Initialize event that runs when the form is loaded.

 Excel 2007 VBA

© Premier Training Limited Page 88

To write a control or form event procedure, open a module by
double-clicking the form or control and select the event from
the Procedure drop-down list box.

Event procedures include the name of the control. For
example, the name of the Click event procedure for a
command button named cmdOK is cmdOK_Click.

If code is added to an event procedure and then the name of
the control is changed, the code remains in procedures with
the previous name.

To simplify development, it is a good practice to name
controls correctly before writing event code.

Displaying and Dismissing a User Form

Show

To test a user form in the Visual Basic Editor, click Run
Sub/UserForm button or press [F5].

To display a user form from Visual Basic, use the Show
method. The following example displays the user form box
named UserForm1:

Sub DisplayMyForm()
 UserForm1.Show
End Sub

Unload

Use the Unload method to remove a user form from memory.
For example, the following code could be assigned to a
cancel button on a form named UserForm1:

Private Sub cmdCancel_Click()
 Unload UserForm1
End Sub

The Me keyword behaves like an implicitly declared variable.
For example, the following code could be assigned to a
cancel button on any user form:

Private Sub cmdCancel_Click()

 Excel 2007 VBA

© Premier Training Limited Page 89

 Unload Me
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 90

Exercise 7
1. Open the workbook SALES.XLS.

a) In the Visual Basic Editor insert a user form and create
the dialog box below by adding label, edit box and drop-down
controls:

b) Write a procedure to show the dialog box and insert the
results onto the Sales worksheet but only if the user chooses
the OK button.

c) Create an procedure to initialise the dialog box when it is
shown.

2. Open the workbook WORKSHEET CONTROLS.XLS and
investigate the worksheet controls and linked formulae.

3. Open the workbook LOAN FORM.XLS and investigate
the custom dialog box and associated procedures.

 Excel 2007 VBA

© Premier Training Limited Page 91

Answers to Exercise 7

Question 1

Sub WeeklySales()
 Dim Count As Integer
 If DialogSheets("D_Sales").Show Then
 Worksheets("Sales").Unprotect
 Worksheets("Sales").Range("A1").Value = _
 Worksheets("Links").Range("A14").Value
 For Count = 1 To 4

 Worksheets("Sales").Range("B2:E2").Cells(Count).Value
= _
 DialogSheets("D_Sales").EditBoxes("Week"
& Count).Text
 Next

 Worksheets("Sales").Columns("A:E").EntireColumn.Auto
Fit
 Worksheets("Sales").Protect
 End If
End Sub

Sub Sales_Frame_Show()
 Dim box As Object
 DialogSheets("D_Sales").DropDowns("Month").Value =
Month(Now())
 For Each box In DialogSheets("D_Sales").EditBoxes
 box.Text = ""
 Next
End Sub

 Excel 2007 VBA

© Premier Training Limited Page 92

Module 10 – menus and
toolbars
Building Custom Menus

In previous versions of Excel, toolbars contained only buttons.
In Excel toolbars can contain buttons, menus or a
combination of both.

The menu bar is a special toolbar at the top of the screen that
contains menus such as File, Edit and View. The default
menu bar contains menus and commands for working with
worksheets. If working with a chart sheet or an embedded
chart, the chart menu bar is displayed instead. Menu bars
can be customised just like any built-in toolbar.

Some menu commands have images next to them so the
user can quickly associate the command with the
corresponding toolbar button.

When Excel is quit, changes made to the menu bar and built-
in toolbars, any custom toolbars created and the toolbars
currently displayed are saved in a toolbars settings file in the
Windows folder. This settings file is saved as
username8.xlb, where username is the user’s Windows or
network log-in name. If the computer is not connected to a
network or not set up with a log-in prompt, the settings file is
saved as excel8.xlb. The toolbar configuration saved in this
file is used by default each time Excel is started.

Toolbars created or customised are available to all workbooks
on the computer. To ensure that a custom toolbar is always
available with a specific workbook, attach the toolbar to the
workbook.

Customising a Toolbar

Change, or customise, a toolbar so it contains buttons or
menu items for the most often used commands or macros. A
menu bar, such as the Worksheet or Chart menu bar, are just
special toolbars

• To add a custom button or menu item to a toolbar:

1. Choose the Commands tab of Tools Customize.

 Excel 2007 VBA

© Premier Training Limited Page 93

2. From the Categories list box, select Macros.

3. Drag the Custom Menu Item or Custom Button topic from
the Commands list box over the toolbar and then release the
mouse. On a menu bar, drag the horizontal line to position on
the menu where the item or button is to be inserted.

4. Right-click the added custom button or menu item and
choose Assign Macro.

5. Select the macro to assign to the button or menu item.

6. Right-click the added custom button or menu item and
edit the Name of the button or item. Include an “&” for an
underlined character.

7. Choose the Close button.

Attaching Toolbars to Workbooks

To make sure that a custom toolbar is always available with a
specific workbook, attach the toolbar to the workbook. Be
sure to save the workbook after attaching a toolbar.

• To attach a custom toolbar:

1. Create the custom toolbar to attach to the workbook.

2. Open the workbook to which the toolbar is to be attached.

3. Choose the Toolbars tab of Tools Customize.

4. Click the Attach button.

Click the custom toolbar to attach, and then click the Copy
button.

Save More Than One Toolbar
Configuration

If a group of customised toolbars are frequently used, sized
and arranged on the screen in a particular way, save the
configuration so that it does not have to be redisplayed each
time.

• To save a toolbar configuration:

 Excel 2007 VBA

© Premier Training Limited Page 94

1. Make any changes to the built-in menu bar and toolbars
and create any custom toolbars to save in the configuration.
Then display the toolbars the way they are to appear.

2. Quit Excel.

3. In the Windows folder, locate the file named
Username8.xlb or Excel8.xlb.

4. Rename the file, retaining the .xlb extension.

5. To use a saved configuration again, use File Open to
open the renamed toolbars settings file. Excel creates a new
default toolbars settings file Username8.xlb when Excel is
next quit.

Creating Custom Toolbars

If a macro is assigned to a toolbar, the macro is available at
any time and for every sheet in the workbook, provided the
toolbar is displayed. The workbook containing the macro is
automatically opened, if it is not already open, when the
button or menu item is clicked from another workbook.

A macro is usually assigned to a custom button or a custom
menu item, but a macro can be assigned to a built-in button
or item overriding the button’s or item’s normal function.

Display

ScreenUpdating

Turn screen updating off to speed up macro code. This will
not only make procedures run faster but will also prevent
distracting screen “flickering”.

• To turn off screen updating:

Application.ScreenUpdating = False

Screen updating is automatically turned back on when the
macro ends or it can be turned on during the course of a
procedure by setting the property to True.

 Excel 2007 VBA

© Premier Training Limited Page 95

DisplayAlerts

Stop Excel’s prompts and alert messages while a macro is
running. Excel chooses the default response.

• To stop the display of alerts:

Application.DisplayAlerts=False

Excel sets the DispalyAlerts property back to True when the
macro stops running.

 Excel 2007 VBA

© Premier Training Limited Page 96

Exercise 8
1. Open the workbook CHANGE CASE.XLS.

2. Add the menu item Change Case to the Format menu of
the Worksheet toolbar. Use “h” as the accelerator key.

3. Add the submenu items Lower, Proper and Upper to the
Change Case menu item. Assign the macro LowerCase to
the menu item Lower, the macro ProperCase to the menu
item Proper and the macro UpperCase to the menu item
Upper. Use “L”, “P” and “U” respectively as the accelerator
keys.

4. Resave the workbook CHANGE CASE.XLS.

 Excel 2007 VBA

© Premier Training Limited Page 97

Module 11 – optional
extras(if required)

Event Triggered Procedures

An event-handler procedure is a specially named procedure
that is executed when a specific event occurs.

A example would be the CommandBttn1_Click procedure that
is executed when a user clicks a command Button that is
stored on a user form or a worksheet.

Below are examples of some of the events that Excel can
recognise;

A workbook is opened or closed

A Cell is double-clicked

A workbook is saved

Data in a cell is entered or saved

The data in a chart is updated

A worksheet is activated or de-activated

To enable or disable events, execute the following VBA code;

Application.EnableEvents = False

A word of warning;

Disabling Events in Excel applies to all workbooks. E.G. If you
disable events in your procedure and then open another
workbook that has, say, a Workbook_Open Procedure, that
procedure will not execute…

The Activate Event

The following procedure is executed whenever the workbook
is activeted. This procedure simply maximises the active
window.

 Excel 2007 VBA

© Premier Training Limited Page 98

Private Sub Workbook_Activate()

 ActiveWindow.WindowState = xlMaximized

End Sub

Examples of Other Workbook Events;

Activate A Workbook is activated

BeforeClose A Workbook is about to be closed

BeforeSave A Workbook is about to be saved

Open A Workbook is about to be opened

SheetCalculate Any Worksheet is calculated (or
Recalculated)

WindowResize Any Workbook window is resized

Creating Add–In Applications

An add-in is added to a spreadsheet to give it added
functionality.

One of the most popular is shipped with Excel, that’s the
Analysis ToolPak, which adds statistical and analysis
capabilities which are not built into Excel.

Add-ins can be loaded and unloaded using the Tools – Add-
Ins command.

 Excel 2007 VBA

© Premier Training Limited Page 99

Appendix A
Naming Conventions

Objects should be named without underscores, hyphens or
other unusual characters such as)(/?\[] {+=}. A mixture of
different letter case should be used to show word breaks such
as JobNumber. Names that will conflict with Visual Basic
properties or keywords such as “Name”, “Caption” and “Size”
should be avoided.

User Form Controls

The following convention applies to unbound controls and to
Visual Basic controls. Controls that are not to have any code
attached to them will obviously not have to be renamed.

Control Type Prefix

TextBox txt

Label lbl

ListBox lst

ComboBox cmb

CommandButton cmd

Frame grp

OptionButton opt

ToggleButton tog

Memory Variables

Memory variables should be prefixed with three lower case
letters to indicate the data type of the variable:

Data Type Prefix

String str

Long lng

Single sng

Variant var

Integer int

Double dbl

 Excel 2007 VBA

© Premier Training Limited Page 100

Index

A
Absolute Cell

Referencing, 52
Adding Labels, 44
Advanced Filter, 61
Advanced Formatting,

21
Auto Filter, 59

C
Chart Area, 46
Chart Axis, 37
Chart Borders And

Shading, 46
Chart Elements, 36
Chart Gridlines, 46
Chart Types, 41
Charts, 36
Comments, 22
Copying 3D Formula,

14
Criteria Range, 61

D
Data Consolidation, 12
Deleting Comments,

24
Displaying Comments,

22

F
File Linking, 4

Formatting Charts, 43
Formula 3D, 14
Freezing Titles, 24

K
Keyboard Shortcuts,

71

L
Lock Links, 6

M
Merge Cells, 21

P
Passwording, 30
Plot Area, 46
Protecting Cell(s), 32

S
Selecting Worksheets,

13
Show All, 60

U
Unprotecting Cell(s),

32
Updating Links, 5, 7

X
X And Y Axis, 45

P R E M I E R
Consultancy and Training Services

Management ♦ Personal Development ♦ Software ♦ Technical

♦ e-Learning ♦ e-Business ♦ Business Integration ♦

Premier offers a comprehensive range of services
including

Full training needs analysis

Tailored courses

Scheduled course programme

On-site training

Training audits

Consultancy

Seminars

Workshops

‘One to one’ coaching

e-Learning

How to find Premier’s City training centre

We are here:
Maven Centre
3rd Floor, 42 New Broad Street
London
EC2M 1SB

Bookings and enquiries:

Telephone +44 (0) 20 7729 1811
Fax +44 (0) 20 7729 9412
Email enquiries@premiercs.co.uk
Website www.premcs.com

